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Weak Observables in MV Algebras

Beloslav RiecÆan1
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A notion of a weak observable is defined and a construction of a weak observable
is examined. With the help of the construction, the sum of weak observables is
realized as well as the upper and lower limits of a sequence of weak observables.

1. INTRODUCTION

An MV algebra (Chang, 1958; Chovanec, 1993; JakubõÂk, 1995; JurecÆk-

ovaÂ, 1995; Mesiar, 1994; Mundici, 1986; RiecÆan, n.d.-a, b); VraÂbel, 1995;
VraÂbelovaÂ, 1995) is an algebraic system (M, % , ( , *, 0, 1), where % and

( are binary operations, * is a unary operation, and 0, 1 are fixed elements,

and some identities are satisfied.

By the Mundici representation theorem (Mundici, 1986) there is a com-

mutative lattice ordered group G and a strong unit u in G such that

M 5 ^ 0, u & , a % b 5 (a 1 b) Ù u

a ( b 5 (a 1 b 2 u) Ú 0, a* 5 u 2 a

and u plays the role 1 in M, and the neutral element 0 of G plays the role 0

in M. We may work with elements of an MV algebra as elements of a

commutative group. E.g., if a # b, a, b P M, then there is in G the element
b 2 a (i.e., such an element that a 1 (b 2 a) 5 b) and, because of a # b,

the element b 2 a P ^ 0, u & 5 M. Similarly in the following definition of an

observable, if A ù B 5 0¤, then x (A ) 1 x (B) 5 x (A ø B) P ^ 0, u & , hence

x (A ) % x (B) 5 (x (A ) 1 x (B)) Ù u 5 x (A ) 1 x (B). So, we can work with

the group operations 1 instead of the MV algebra operation % .
A state (Chovanec, 1993) is a mapping m: M ® ^ 0, 1 & such that m (1)

5 1, m (an) p m (a), whenever an p a and m (a) 5 m (b) 1 m (c), whenever
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a 5 b % c, b # c*. An observable is a mapping x: @(R) ® M such that

x (R) 5 1, x (An) p x (A ) whenever An p A and x (A ø B) 5 x (A ) 1 x (B)

whenever A ù B 5 0¤.
In this article we shall consider weak observables instead of observables

replacing the condition x (R) 5 1 by a weaker condition m (x (R)) 5 1.

In Section 2 we construct a weak observable from a function F: R ®
M. Of course, we need a special property of M, so-called weak s -distributivity

(Fremlin, 1975; Wright, 1971). Recall that in the case that M is a vector

lattice, the weak s -distributivity is a necessary and sufficient condition for
the extendability of any M-valued measure from a ring to the generated s -ring.

Using these results, we construct a sum of two (independent) weak

observables. We prove the commutative and the associative law.

2. CONSTRUCTION OF A WEAK OBSERVABLE

We shall assume that M is an MV-algebra satisfying the following

two conditions:

(i) M is s -complete, i.e., every sequence of elements in M has the

supremum and the infimum.

(ii) M is weakly s -distributive, i.e., for every bounded double sequence
(aij)i,j such that aij o 0 ( j ® , ` , i 5 1, 2, . . .) there is

`
w P N N

~
`

i 5 1
ai w (i) 5 0

By a weak observable (with respect to a state m) we mean a mapping

x: @(R) ® M satisfying the following properties:

(i) m (x (R)) 5 1.

(ii) If A, B P @(R), A ù B 5 0¤, then x (A ø B) 5 x (A ) 1 x (B).

(iii) If An P @(R) (n 5 1, 2, . . .), An p A, then x (An) p x (A ).

Theorem 1. Let F: R ® M be a mapping satisfying the following

conditions:

(i) If t1 , t2, then F (t1) # F (t2).
(ii) If tn p t, then F (tn) p F (t).
(iii) limt ® ` m (F (t)) 5 1.

(iv) limt ® 2 ` m (F (t)) 5 0.

Then there exists a weak observable x: @(R) ® M such that m (x (( 2 ` ,

t))) 5 m (F (t)) for every t P R.

Proof. We shall use two results from RiecÆan (n.d.-a) concerning M-

valued measures. An M-valued measure is a mapping m : 5 ® M such that

m (0¤) 5 0, m is additive and continuous. By a corollary of the Alexandrov
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theorem (Theorem 2 in RiecÆan, n.d.-a), from conditions (i) and (ii) the

existence follows of a measure l F: 5 ® M defined on the ring 5 generated

by all intervals of the form ^ a, b) such that

l F( ^ a, b)) 5 F (b) 2 F (a)

for every a, b P 5, a , b. Now the measure extension theorem (RiecÆan,

n.d.-a, Theorem 3) is applicable: There exists a measure (denote it by x)

defined on the s -algebra s (5) 5 @(R) with values in M and extending l F.

We shall prove that x is a weak observable. Indeed, x: @(R) ® M is additive
and continuous.

Moreover,

m (x (R)) 5 m 1 x 1 ø
`

n 5 1
^ 2 n, n) 2 2 5 m 1 ~

`

n 5 1
x( ^ 2 n, n)) 2

5 m 1 ~
`

n 5 1
l F( ^ 2 n, n)) 2 5 m 1 ~

`

n 5 1
(F (n) 2 F ( 2 n)) 2

5 lim
n ® `

m (F (n)) 2 lim
n ® `

F ( 2 n) 5 1 2 0 5 1

Finally,

m (x (( 2 ` , t))) 5 m 1 1 ø
`

n 5 1
^ t 2 n, t 2 2 5 m 1 ø

`

n 5 1
F( ^ t 2 n, t)) 2

5 m (F (t)) 2 lim
n ® `

m (F (t 2 n)) 5 m (F (t))

3. SUM OF WEAK OBSERVABLES

Of course, the classical case seems to be the most illustrative. If ( V ,

6, P) is a probability space, then every random variable j : V ® R,) is an

6-measurable function. Putting x (A ) 5 j 2 1(A ), we obtain an observable x:

@ (R) ® 6, 6 being an MV algebra with A % B 5 A ø B and A ( B 5
A ù B. Hence in the case of the sum of observables we can be inspired by

the sum j 1 h of random variables j , h :

( j 1 h ) 2 1(( 2 ` , t))

5 ø
`

n 5 1
ø

(i, j) P a n

j 2 1 1 K i 2 1

2n ,
i

2n 2 2 ù h 2 1 1 K j 2 1

2n ,
j

2n 2 2
where (i,j ) P a n if and only if i /2n 1 i /2n , t. In the MV algebra M-valued

case we shall substitute ø `
n 5 1 by Ú `

n 5 1, ø (i, j) P a n by S (i,j) P a n and ù by the

operation ( .
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We have restricted our considerations to the case of the operation ( .

The second restriction will concern the case of ( -independent observables.

Two weak observables x,y are called ( -independent if

m (x (A ) ( y (B)) 5 m (x (A )) ? m (y (B))

for every A, B P @(R). More generally, weak observables x1, . . . , xn are ( -

independent if

m (x1(A1) ( x2(A2) ( ? ? ? ( xn(An)) 5 m (x1(A1)) ? m (x1(A1)) ? . . . ? m (x1(An))

for every A1, A2, . . . , An P @(R).
If m: M ® ^ 0, 1 & is a state and x: @(R) ® M is a weak observable,

then the composite mapping mx 5 m + x: @(R) ® ^ 0, 1 & defined by the

formula mx(A ) 5 m (x (A )) is a probability measure. Evidently

m (x (A )) ? m (y (B)) 5 mx 3 my(A 3 B)

where mx 3 my is the product of the measures mx , my. Therefore ( indepen-

dence of x, y can be formulated by the equality

m (x (A ) ( y (B)) 5 mx 3 my(A 3 B), A, B P @(R)

Put A n
i 5 ^ (i 2 1)/2n, i /2n), i P Z, n P N, a n(t) 5 {(i, j ); i 1 j , 2nt}.

We want to work with the sums

g n(t) 5 o
(i, j) P a n(t)

x (A n
i ) ( y (A n

j )

Of course, since the distributive law for the operations % and ( need not

hold, we are not able to prove that g n(t) # g n+1(t). Therefore instead of g n(t)
we define first

b 1(t) 5 a 1(t)

b n(t) 5 a n(t) \ {(i, j ); $ m , n, $ (k, l) P a m(t), A n
i 3 An

j , Am
k 3 A m

l }

G n(t) 5 o
n

m 5 1
o

(i, j) P b m(t)
x (A n

i ) ( y (A n
j )

Theorem 2. Let M be a s -complete MV algebra, x, y: @(R) ® M be

( -independent weak observables. Define G n(t) as above and

F (t) 5 ~
`

n 5 1
G n(t)

Then F satisfies the assumptions (i)±(iv) of Theorem 1.

Proof. First note that a semidistributive law holds:

(a 1 b) ( c $ (a ( c) 1 (b ( c)
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Let t , s. By the semidistributive law G n(t) # G n(s) (n 5 1, 2, . . .),

hence F (t) # F (s).
Assume tk p t. Denote S 5 sup {i 1 j; (i, j ) P b n(t)}. It is easy to see

that S is an integer, S , 2n t. Therefore there exists k such that S , 2ntk.

Hence to every n there is k such that b n(t) , b n(tk). Denote

F (t) 5 ~
n

an, F (tk) 5 ~
n

bn, k

Evidently F (tk) # F (t), hence Ú k F (tk) # F (t). On the other hand, we

have proved that to every n there is k such that b n(t) , b n(tk) hence an #
bn,k. Therefore

an # bn, k # ~
n

bn, k 5 F(tk) # ~
k

F (tk)

F (t) 5 ~
n

an # ~
k

F(tk)

We have proved (i) and (ii). For to prove (iii) and (iv), we first prove

m (F (t)) 5 mx 3 my({(u, v); u 1 v , t}) ( * )

Indeed

m (F (t)) 5 lim
n ® ` o

n

m 5 1
o

(i, j) P b m(t)
m 1 x 1 K i 2 1

2n ,
i

2qn 2 2 ( y 1 K j 2 1

2n ,
j

2n 2 2 2
5 lim

n ® ` o
n

m 5 1
o

(i, j) P b m(t)
mx 3 my 1 K i 2 1

2n ,
i

2n 2 3 K j 2 1

2n

j

2n 2 2
5 mx 3 my 1 ø

`

n 5 1
ø

(i, j) P a n(t) K i 2 1

2n ,
i

2n 2 3 K j 2 1

2n ,
j

2n 2 2
5 mx 3 my({(u, v); u 1 v , t})

Since mx 3 my is a probability measure, (iii) and (iv) follow by ( * ).

By Theorem 1 there is a weak observable z such that m (z (( 2 ` , t))) 5
m (F (t)) for every t P R. This function z will be called a sum of weak

observables x, y and will be denoted by x 1 y.

Theorem 3. Let M be a s -complete, weakly s -distributive MV algebra.
Let x, y, z: @(R) ® M be ( -independent weak (with respect to m) observables.

Then the following properties are satisfied:

(i) mx+y 5 my+x (commutative law).

(ii) m(x 1 y) 1 z 5 mx 1 (y 1 z) (associative law).
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Proof. By the definition of x 1 y and the equality ( * ) (see Proof of

Theorem 2),

mx 1 y(( 2 ` , t)) 5 m ((x 1 y)(( 2 ` , t))) 5 m (F (t))

5 (mx 3 my)(g
2 1(( 2 ` , t)))

where g: R 3 R ® R is defined by g (u, v) 5 u 1 v. Therefore

mx 1 y 5 (mx 3 my) + g 2 1 ( * * )

By ( * * ) the commutative law follows. Further,

m(x 1 y) 1 z 5 (mx 1 y 3 mz) + g 2 1

5 (((mx 3 my) + g 2 1) 3 mz) + g 2 1

hence by the Fubini theorem

m(x 1 y) 1 z(( 2 ` , t))

5 (mx 1 y 3 mz)({(u, v); u 1 v , t})

5 # R

mx 1 y(( 2 ` , t 2 u)) dmz(u)

5 # R

mx 3 my({(w, v); v 1 w , t 2 u}) dmz(u)

5 # R 1 # R

mx(( 2 ` , t 2 u 2 v)) dmz(v) 2 dmz(u)

5 mx 3 my 3 mz({(w, v, u); u 1 v 1 w , t})

By the equality

m(x 1 y) 1 z(( 2 ` , t)) 5 mx 3 my 3 mz({(u, v, w); u 1 v 1 w , t})

the equality

m(x 1 y) 1 z(( 2 ` , t)) 5 mx 1 (y 1 z)(( 2 ` , t))

follows, hence

m(x 1 y) 1 z 5 mx 1 (y 1 z)



Weak Observables in MV Algebras 189

ACKNOWLEDGMENT

This work was supported by grant VEGA 2/1228/95.

REFERENCES

Chang, C. C. (1958). Algebraic analysis of many valued logics, Transactions of the American

Mathematical Society, 88, 467±490.

Chovanec, F. (1993). States and observables on MV algebras, Tatra Mountains Mathematical

Publications, 3, 55±63.

Fremlin, D. H. (1975). A direct proof of the Mathes±Wright integral extension theorem, Journal

of the London Mathematical Society, 11, 276±284.

JakubõÂk, J. (1995). On complete MV algebras, Czechoslovak Mathematical Journal, 45,

473±480.

JurecÆkovaÂ, M. (1995). The measure extension theorem on MV s -algebras, Tatra Montains

Mathematical Publications, 6, 55±61.

Mesiar, R. (1994). Fuzzy difference posets and MV algebras, In Proceedings IPMU 94, Paris

1994, B. Bouchon-Meuni er and R. R. Jager, eds. pp. 208±212.

Mundici, D. (1986). Interpretation of AFC*-algebras in Lukasiewicz sequential calculus, Journal

of Functional Analysis, 65, 15±63.

RiecÆan, B. (n.d.-a). On the extension of D-poset valued measures,) Czechoslovak Mathematical

Journal , to appear.

RiecÆan, B. (n.d.-b). Upper and lower limits of sequences of observables in D-poset of fuzzy

sets, Mathematica Slovacs , to appear.

RiecÆan, B., and Neubrunn, T. (1996). Integral, Measure, and Ordering , Kluwer, Dordrecht,

and Inter Science, Bratislava, 1997.

VraÂbel, P. (1995). Lower integral on MV-algebras, Acta Mathematica, 2, 51±58.

VraÂbelovaÂ, M. (1995). The operator extension theorem in MV s -algebras, Acta Mathematica,

2, 59±65.

Wright, J. D. M. (1971). The measure extension problem for vector lattices, Annales de l’ Institut

Fourier Grenoble, 21, 65±85.


