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Weak Observables in MV Algebras

Beloslav Rie¢an’
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A notion of a weak observable is defined and a construction of a weak observable
is examined. With the help of the construction, the sum of weak observables is
realized as well as the upper and lower limits of a sequence of weak observables.

1. INTRODUCTION

An MV algebra (Chang, 1958; Chovanec, 1993; Jakubik, 1995; Jureck-
ova, 1995; Mesiar, 1994; Mundici, 1986; Riecan, n.d.-a, b); Vrabel, 1995;
Vrabelova, 1995) is an algebraic system (M, &, ©, * 0, 1), where & and
( are binary operations, * is a unary operation, and 0, 1 are fixed elements,
and some identities are satisfied.

By the Mundici representation theorem (Mundici, 1986) there is a com-
mutative lattice ordered group G and a strong unit # in G such that

M =0, u), a®Bb=(a+b)Aru
aOb=(a+b—uvo, a*=u—a

and u plays the role 1 in M, and the neutral element 0 of G plays the role 0
in M. We may work with elements of an MV algebra as elements of a
commutative group. E.g., if a = b, a, b € M, then there is in G the element
b — a (i.e., such an element that @ + (b — a) = b) and, because of a < b,
the element » — a € (0, u) = M. Similarly in the following definition of an
observable, if A N B = 0, then x(A4) + x(B) = x(4 U B) € (0, u), hence
x(A4) B x(B) = (x(4) + x(B)) Au = x(A) + x(B). So, we can work with
the group operations + instead of the MV algebra operation <b.

A state (Chovanec, 1993) is a mapping m: M — (0, 1) such that m (1)
=1, m(a,) ~m(a), whenever a, ~a and m(a) = m(b) + m (c), whenever
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a=>b P c, b = c* An observable is a mapping x: B(R) — M such that
x(R) = 1, x(A4,) M x(A) whenever 4, M A and x(A U B) = x(4) + x(B)
whenever 4 N B = 0.

In this article we shall consider weak observables instead of observables
replacing the condition x(R) = 1 by a weaker condition m(x(R)) = 1.

In Section 2 we construct a weak observable from a function F: R —
M. Of course, we need a special property of M, so-called weak c-distributivity
(Fremlin, 1975; Wright, 1971). Recall that in the case that M is a vector
lattice, the weak o-distributivity is a necessary and sufficient condition for
the extendability of any M-valued measure from a ring to the generated 6-ring.

Using these results, we construct a sum of two (independent) weak
observables. We prove the commutative and the associative law.

2. CONSTRUCTION OF A WEAK OBSERVABLE

We shall assume that M is an MV-algebra satisfying the following
two conditions:

(i) M is c-complete, i.e., every sequence of elements in M has the
supremum and the infimum.

(i1) M is weakly o-distributive, i.e., for every bounded double sequence
(aj)ij such that a; N 0 (j —, ©,i = 1, 2, . ..) there is

%/;N v, digy =0

By a weak observable (with respect to a state m) we mean a mapping
x: B(R) — M satisfying the following properties:

(1) m(x(R) = 1.

(i) If 4, B € B(R), AN B =0, then x(4 U B) = x(4) + x(B).

(i) If 4, € BR) (n =1, 2, ...), Aw 7 A, then x(4,) 7 x(A4).

Theorem 1. Let F: R — M be a mapping satisfying the following
conditions:

(1) If 1 < B, then F (1) = F(b).

(ii) If z, /¢, then F(5,) 7 F (9).

(i) lim; e m(F(2) = 1.

(1v) lim;,—w m(F (£)) = 0.

Then there exists a weak observable x: B(R) — M such that m (x ((—®,
1)) = m(F (¢)) for every t € R

Proof. We shall use two results from Riecan (n.d.-a) concerning M-
valued measures. An M-valued measure is a mapping p: R — M such that
(@ = 0, pu is additive and continuous. By a corollary of the Alexandrov
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theorem (Theorem 2 in Riecan, n.d.-a), from conditions (i) and (ii) the
existence follows of a measure Ar: & — M defined on the ring R generated
by all intervals of the form {a, b) such that

Ar({a, b)) = F(b) — F(a)

for every a, b € R, a < b. Now the measure extension theorem (Riecan,
n.d.-a, Theorem 3) is applicable: There exists a measure (denote it by x)
defined on the c-algebra o(R) = %B(R) with values in M and extending Ar
We shall prove that x is a weak observable. Indeed, x: B(R) — M is additive
and continuous.

Moreover,

m(x(R)) = m(x(nc_jl (—n, n))) = m(n\g_;1 x({(—n, n)))

m(n\_/1 Ar((—n, ) = m(n\_/1 (F(n) — F(—n)))

Il
S
N
Nt

lim m(F(n)) — lim F(—n) =1 —0 = 1
n—% n—0

e o e

= m(F (1) = lim m(F(t = n)) = m(F(0)

Finally,

m(x((—=, 1))

3. SUM OF WEAK OBSERVABLES

Of course, the classical case seems to be the most illustrative. If ({2,
&, P) is a probability space, then every random variable & ) — R) is an
$-measurable function. Putting x(4) = £~!(4), we obtain an observable x:
B(R) > &, & being an MV algebra with 4 B =AU Band 4 O B =
A N B. Hence in the case of the sum of observables we can be inspired by
the sum & + m of random variables &, n:

E+ (==, 0)

© =1 =1 g
=U U ! = !
Yo S (< 2 ’2”))m1 (< 2" 2))

where (i,j) € o, if and only if i/2" + i/2" < t. In the MV algebra M-valued
case we shall substitute U,=1 by vyi=1, U ;) € 0, by 2(;;) €0, and N by the
operation (.
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We have restricted our considerations to the case of the operation ©.
The second restriction will concern the case of (J-independent observables.
Two weak observables x,y are called ©-independent if

m(x(4) © y(B)) = m(x(4)) - m(y(B))

for every A, B € B(R). More generally, weak observables xi, . . ., x, are ©-
independent if

m(x1(A1)) O x2(A4) © -+ O x,(A4,)) = m(x1(A4)) - m(x1(A4y)) - ... - m(x1(4,))
for every A1, Az, ..., Ay € B(R).

If m: M — (0, 1) is a state and x: B(R) — M is a weak observable,
then the composite mapping m, = m © x: B(R) — (0, 1) defined by the
formula m(A4) = m(x(A)) is a probability measure. Evidently

m(x(A)) - m(y(B)) = my X m(4 X B)

where m, X my is the product of the measures m, m,. Therefore © indepen-
dence of x, y can be formulated by the equality

m(x(A4) © y(B)) = my X my(4 X B), A, B € B(R)

Put A7 =G — 1)/2",iI12"),i € Z, n € N, o,(t) = {(i, j); i +j <2"t}.
We want to work with the sums

Ya) = > x(4) ©p(4))

(1,)) €0p()

Of course, since the distributive law for the operations < and © need not
hold, we are not able to prove that y,(f) = V,+1(¢). Therefore instead of y,(¢)
we define first

Bi(?) = ou(n)
Bn(t) = a,()\{(i, j); Im < n, Ak, ) € a,(0), A7 X A} C AP X A"}
Lo =3 DOy

(0 mZ::l (m;mm x(47) © y(4j)

Theorem 2. Let M be a o-complete MV algebra, x, y: B(R) - M be
(O-independent weak observables. Define I',(7) as above and

F(n= v L

Then F satisfies the assumptions (i)—(iv) of Theorem 1.
Proof. First note that a semidistributive law holds:

(a+b)Oc=@Oec)+ (b Do)
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Let t < s. By the semidistributive law I'y(d) < Tw(s) n = 1, 2, .. ),

hence F (1) < F(s).
Assume # 7't. Denote S = sup {i + j; (i, j) € Ba(9)}. It is easy to see
that S is an integer, S < 2" r. Therefore there exists k such that S < 2"#.

Hence to every n there is k such that 3,())C B,(#%). Denote

F () =V an, F(t) =V bunx

Evidently F(#) =< F(t), hence vi F(#) = F(t). On the other hand, we

have proved that to every n there is k such that B,(¢) C B.(#%) hence a, <
by k. Therefore
an = bk =V bnr = F(tr) = \k/ F ()
F(=Va = \k/ F(t)
We have proved (i) and (ii). For to prove (iii) and (iv), we first prove
m(F (1) = me X my({(u, v); u + v < 1}) (*)

Indeed

o =1 _i ||, =1 I
m(F(l)) - }’213] mZ::I (i,j);m(;) m(x(< 2;1 5 ZqH)) Oy(< 2n s 2”)))
lim 55 mXom, il DY e
n—>% =21 (i, )& () 2 2 2

” i—1 i i—1
xmlu U [f— E|x ,
. my(n—l (i,j)ean(t)< 2" 2") < A

=me X m({(u, v); u +v<t})

Since m, X m, is a probability measure, (iii) and (iv) follow by (*).

By Theorem 1 there is a weak observable z such that m (z((—, 7)) =
m(F (t)) for every + € R This function z will be called a sum of weak
observables x, y and will be denoted by x + y.

Theorem 3. Let M be a 6-complete, weakly o-distributive MV algebra.
Letx, y, z: B(R) — M be ©O-independent weak (with respect to m) observables.
Then the following properties are satisfied:

(1) My+y = my+y (commutative law).

(11) M+y)+: = Mrt+(+2) (associative law).
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Proof. By the definition of x + y and the equality (*) (see Proof of
Theorem 2),

Moy (=%, 1))

m((x + y)((—%, 9)) = m(F(1)
= (me X my)(g (==, 1))
where g: R X R — R is defined by g(u, v) = u + v. Therefore
Mty = (me X my) g™ (%)

By (**) the commutative law follows. Further,

M(x+y)+:z = (mx+y X m:) g71

= (((mx X my) gil) X m) g71

hence by the Fubini theorem

Mty +:((—%, 1))

= (Myt+y X m){(u, v); u + v < t})

= | men((—%, 1 — u)) dm=(u)

R

= ( my X my({(w, v); v + w <t — u}) dmu)
R

~

= (J m((—®, t —u — v)) dm(v) | dn(u)

JR

=me X my X m({(w, v u); u +v+w<t})
By the equality
M+ +(—2, 1)) = my X my X m({(u, v, w); u + v+ w < t})
the equality
Mty +{(—R, 1)) = Myt pt+2)((—®, 1))
follows, hence

M(x+y)+z = Mx+(y+2)
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